Dispersal Ability Determines the Role of Environmental, Spatial and Temporal Drivers of Metacommunity Structure
نویسندگان
چکیده
Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that "all-or-nothing" interpretations on the mechanisms structuring metacommunities are rather the exception than the rule.
منابع مشابه
Inferring species roles in metacommunity structure from species co-occurrence networks.
A long-standing question in community ecology is what determines the identity of species that coexist across local communities or metacommunity assembly. To shed light upon this question, we used a network approach to analyse the drivers of species co-occurrence patterns. In particular, we focus on the potential roles of body size and trophic status as determinants of metacommunity cohesion bec...
متن کاملThe role of dispersal mode and habitat specialization for metacommunity structure of shallow beach invertebrates
Metacommunity ecology recognizes the interplay between local and regional patterns in contributing to spatial variation in community structure. In aquatic systems, the relative importance of such patterns depends mainly on the potential connectivity of the specific system. Thus, connectivity is expected to increase in relation to the degree of water movement, and to depend on the specific trait...
متن کاملMetacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differ...
متن کاملBody size and dispersal mode as key traits determining metacommunity structure of aquatic organisms.
Relationships between traits of organisms and the structure of their metacommunities have so far mainly been explored with meta-analyses. We compared metacommunities of a wide variety of aquatic organism groups (12 groups, ranging from bacteria to fish) in the same set of 99 ponds to minimise biases inherent to meta-analyses. In the category of passive dispersers, large-bodied groups showed str...
متن کاملSpatiotemporal controls of simulated metacommunity dynamics in dendritic networks
Understanding the mechanisms that create spatial and temporal patterns of functional diversity in stream networks is a goal of basic research and has implications for effective conservation of freshwater ecosystems. These patterns are likely to be influenced by the combination of temporally variable environmental conditions, movement constraints imposed by network structure, and the trait compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014